Abstract

Surface morphological characteristics of a copolyimide film prepared from a fluorine-based dianhydride combined with an aliphatic siloxane-based diamine and an aromatic containing ether linkages one, were studied before and after oxigen plasma treatment using atomic force microscopy (AFM). The three-dimensional texture parameters calculated from the AFM data have highlighted a more pronounced surface morphology (higher average roughness and developed interfacial area ratio), improved bearing properties and no predominant orientation, as the plasma exposure time was increased from 6 to 10 minutes, using the same power (40 W). The reactive groups generated on the binding surface have facilitated the interaction with a biocidal agent, such as silver nitrate. This creates silver-containing nanoparticles, of about 120-150 nm, uniformly distributed on the copolymer surface, with a density of 10±2 particles/μm2. The functionalization with the biocidal agent of the flourinated copolyimide surface was conducted for testing its antimicrobial properties, namely the inhibition/destruction of Escherichia coli bacterium.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call