Abstract

High-power lithium ion batteries (LIBs) have extensive applications ranging from electronic devices to electric vehicles. The composition and structure of separators largely impact the rate performances of LIBs. Here, a three-dimensional (3D) nanoporous poly(vinylidenefluoride-hexafluoropropylene) (PVDF-HFP)- polyethylene (PE) composite separator is obtained through solvent liberation. The composite separator owns a high ionic conductivity of 1.01 mS·cm lithium ion batteries (LIBs) have extensive applications ranging from electronic devices to electric vehicles. The composition and structure of separators largely impact the rate performances of LIBs. Here, a three-dimensional (3D) nanoporous poly(–1 at room temperature due to the high porosity up to 95.6% and the uniform 3D pore distribution. LiFePO4/Li half-cells with the composite separator deliver record rate capacities of 97 mAh·g–1 at 10 C and 57 mAh·g–1 at 20 C. PE in the composite separator significantly enhances the mechanical strength and thermal...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.