Abstract
Fabrication of a nanocomposite with a low-cost and efficient synthesis method instead of using electrocatalysts based on platinum metal has become one of the main challenges in energy storage devices and fuel cells. In this regard, a bifunctional electrocatalyst for supercapacitors and oxygen reduction reaction is fabricated and tested. The novelty of this study is the synthesis method and enhancement of the electrochemical characteristics of synthesized electrocatalysts. The core-shell method is used for the electrocatalyst's synthesis which uses Zeolitic Imidazolate Framework (ZIF)-8, ZIF-67, and Material Institute Lavoisiers (MIL)-101 for the fabrication of three types of electrocatalysts. In the following, to increase the characteristics such as conductivity and stability, doping of Copper (Cu), Cerium (Ce), and Lanthanum (La) are added to the nanocomposites. The Co@NC, CoZn@NC, and CoZn@FeNC prepared electrocatalysts are obtained from the pyrolyze process of La/ZIF-67, CeCu/ZIF-8@ La/ZIF-67, MIL-101@CeCu/ZIF-8/La/ZIF-67. The results indicated that the CoZn@NC electrocatalyst has the best performance in the oxygen reduction reaction (ORR) with an onset potential of 0.062 (V vs Ag/AgCl) and current density of −12.97 (mA/cm2) at a constant voltage of −1 V. Furthermore, the electron transfer number of CoZn@NC electrocatalyst for ORR was 3.64. The conducted Galvanostatic Charge-Discharge (GCD) tests demonstrated that the CoZn@NC electrode has the highest capacitance of 271.14 F/g. The outcomes showed that by the core-shell method, various properties of nanocomposites can be utilized to solve the weaknesses of catalysts by using proper metals. Moreover, the presence of Cu2+,Ce3+,La3+ improve the structural defects in the carbon matrix, the stability based on the chronoamperometry results, and the mass transfer. The study provides a perspective for future researches to fill the research gaps to obtain the new supercapacitors utilize on a large scale in the electronics industry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.