Abstract
To investigate the effects of force magnitude on three-dimensional alveolar trabecular bone structure and root resorption. Twenty-two 11-week-old Sprague Dawley rats were randomly assigned to two groups that received a mesially directed orthodontic force to the upper right first molars at different magnitudes of force, 30 g or 100 g, for 2 weeks. The contralateral molars served as controls. The teeth and alveolar bone around the teeth were dissected from the sacrificed animals and were scanned with micro-computed tomography (CT). Structural properties of the trabecular bone and resorption crater volume on the mesial roots of the maxillary first molars were analyzed. The bone volume fraction of the 30 g group and the 100 g group increased significantly in both groups, and trabecular separation of the 100 g group decreased significantly compared with controls (P < .05). The total root resorption volume in all experimental groups and the resorption volume of the lower distal surface in the 100 g group increased significantly compared with controls (P < .01). The volume of the upper mesial root surface in the 30 g group increased significantly compared with the 100 g group and controls (P < .05). The alveolar trabecular bone was denser after orthodontic force was applied for 14 days. The effects of 30 g and 100 g orthodontic forces on root resorption were different at the upper mesial and lower distal surfaces of the mesial roots of maxillary first molars.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.