Abstract

We present a three-dimensional density model of coronal prominence cavities, and a morphological fit that has been tightly constrained by a uniquely well-observed cavity. Observations were obtained as part of an International Heliophysical Year campaign by instruments from a variety of space- and ground-based observatories, spanning wavelengths from radio to soft X-ray to integrated white light. From these data it is clear that the prominence cavity is the limb manifestation of a longitudinally extended polar-crown filament channel, and that the cavity is a region of low density relative to the surrounding corona. As a first step toward quantifying density and temperature from campaign spectroscopic data, we establish the three-dimensional morphology of the cavity. This is critical for taking line-of-sight projection effects into account, since cavities are not localized in the plane of the sky and the corona is optically thin. We have augmented a global coronal streamer model to include a tunnel-like cavity with elliptical cross-section and a Gaussian variation of height along the tunnel length. We have developed a semi-automated routine that fits ellipses to cross-sections of the cavity as it rotates past the solar limb, and have applied it to Extreme Ultraviolet Imager observations from the two Solar Terrestrial Relations Observatory spacecraft. This defines the morphological parameters of our model, from which we reproduce forward-modeled cavity observables. We find that cavity morphology and orientation, in combination with the viewpoints of the observing spacecraft, explain the observed variation in cavity visibility for the east versus west limbs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call