Abstract
In this current paper, we propose to study a three-dimensional Moran model (Xn(1),Xn(2),Xn(3)), where each random walk (Xn(i))∈{1,2,3} increases by one unit or is reset to zero at each unit of time. We analyze the joint law of its final altitude Xn=max(Xn(1),Xn(2),Xn(3)) via the moment generating tools. Furthermore, we show that the limit distribution of each random walk follows a shifted geometric distribution with parameter 1−qi, and we analyze the maximum of these three walks, also giving explicit expressions for the mean and variance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.