Abstract

This paper presents self-consistent three-dimensional (3D) plasma transport simulations in the boundary of stellarator W7-X obtained with the Monte Carlo code EMC3-EIRENE for three typical island divertor configurations. The chosen 3D grid consists of relatively simple nested finite toroidal surfaces defined on a toroidal field period and covering the whole edge topology, which includes closed surfaces, islands and ergodic regions. Local grid refinements account for the required high resolution in the divertor region. The distribution of plasma density and temperature in the divertor region, as well as the power deposition profiles on the divertor plates, are shown to strongly depend on the island geometry, i.e. on the position and size of the dominant island chain. Configurations with strike-point positions closer to the gap of the divertor chamber generally favour the neutral compression in the divertor chamber and hence the pumping efficiency. The ratio of pumping to recycling fluxes is found to be roughly independent of the separatrix density and is thus a figure of merit for the quality of the configuration and of the divertor system in terms of density control. Lower limits for the achievable separatrix density, which determine the particle exhaust capabilities in stationary conditions, are compared for the three W7-X configurations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call