Abstract

Design of freestanding electrodes incorporated with redox-active organic materials has been limited by the poor intrinsic electrical conductivity and lack of methodology driving the feasible integration of conductive substrate and the organic molecules. Single-walled carbon nanotube (SWCNT) aerogels, which possess continuous network structure and high surface area, offer a three-dimensional electrically conducting scaffold. Here, we fabricate monolithic organic electrodes by coating a nanometer-scale imide-based network (IBN) that possesses abundant redox-active sites on the 3D SWCNT scaffold. The substantially integrated 3D monolithic organic electrodes sustain high electrical conductance through a 3D electronic pathway in their compressed form (∼21 μm). A thin and controllable layer (<8 nm) of IBN organic materials has a strong adhesion onto the ultra-lightweight and conductive substrate and facilitates multielectron redox reactions to deliver a specific capacity of up to 1550 mA h g-1 (corresponding to the areal capacity of ∼2.8 mA h cm-2). The redox-active IBN in synergy with the 3D SWCNT scaffold can enable superior electrochemical performances compared to the previously reported organic-based electrode architectures and inorganic-based electrodes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call