Abstract
A three-dimensional computational model was developed to investigate the effect of synthetic jet interaction with cross flow in micro-channel on the cooling of microchip. A range of parametric studies by varying heat fluxes at the surface of the top of the silicon wafer and membrane oscillating amplitudes was conducted. The resulting complex, conjugate heat transfer through the silicon substrate was analysed. When the actuator was switched on, noticeable temperature drop was observed at all points in the substrate. Quasi steady states have been reached for the presented results which indicated the available cooling potential of single synthetic jet actuator.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.