Abstract

ABSTRACT The paper presents the results of three-dimensional (3D) modelling of the structure and the emission of accretion columns formed above the surface of accreting strongly magnetized neutron stars under the circumstances when a pressure of the photons generated in the column base is enough to determine the dynamics of the plasma flow. On the foundation of numerical radiation hydrodynamic simulations, several 3D models of accretion column are constructed. The first group of the models contains spatially 3D columns. The corresponding calculations lead to the distributions of the radiation flux over the sidewalls of the columns which are not characterized by axial symmetry. The second group includes the self-consistent modelling of spectral radiative transfer and two-dimensional spatial structure of the column, with both thermal and bulk Comptonization taken into account. The changes in the structure of the column and the shape of X-ray continuum are investigated depending on physical parameters of the model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.