Abstract
ABSTRACT A novel image reconstruction approach to terahertz pulsed imaging for detecting malignant and fibrous cells within healthy tissue is presented. The non-ionizing effect of the terahertz radiation on healthy tissue makes it a future diagnosis method in medical imaging. The implemented method is based on the convolutional time-reversed FDTD algorithm in the terahertz range. It is computationally efficient and accurately reconstructs images of malignancies from reflected terahertz signals. Besides, the technique is capable of differentiating malignant, fibrous, and fatty cells through the variations of their electrical properties at the terahertz frequency range and well reconstructing their images in 3D. The images created in this method are in high resolution, even for cell-sized malignancies. Furthermore, the proposed technique is compared with conventional terahertz imaging methods and found to have more sophisticated outcomes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.