Abstract

Results of simulations of three-dimensional (3D) temperature and flow fields inside and outside of a DC arc plasma torch in steady state are presented with transverse particle and carrier gas injection into the plasma jet. The results show that an increase of the gas flow rate at constant current moves the anode arc root further downstream leading to higher enthalpy and velocity at the exit of the torch anode, and stronger mixing effects in the jet region. An increase of the arc current with constant gas flow rate shortens the arc, but increases the enthalpy and velocity at the exit of the torch nozzle, and leads to longer jets. 3D features of the plasma jet due to the 3D starting conditions at the torch exit and, in particular, due to the transverse carrier gas and particle injection, as well as 3D trajectories and heating histories of sprayed particles are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.