Abstract

The modeling and simulation of biological tissue is the core part of a virtual surgery system. In this study, the geometric and physical methods related to soft tissue modeling were investigated. Regarding geometric modeling, the problem of repeated inverse calculations of control points in the Bezier method was solved via re-parameterization, which improved the calculation speed. The base surface superposition method based on prior information was proposed to make the deformation model not only have the advantages of the Bezier method but also have the ability to fit local irregular deformation surfaces. Regarding physical modeling, the fitting ability of the particle spring model to the anisotropy of soft tissue was improved by optimizing the topological structure of the particle spring model. Then, the particle spring model had a more extensive nonlinear fitting ability through the dynamic elastic coefficient parameter. Finally, the secondary modeling of the elastic coefficient based on the virtual body spring enabled the model to fit the creep and relaxation characteristics of biological tissue according to the elongation of the virtual body spring.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call