Abstract

ABSTRACTCoarse clastic sediments (boulders) on coastlines have seen a groundswell in geomorphic research interest over recent years, associated in part with the potential of boulder evidence for interpreting characteristics of high‐energy wave processes. Yet, the fundamental property of boulder volume is normally difficult to measure accurately owing to complex clast morphology and irregular surface texture. To tackle this problem, this paper concentrates on creating precise, measurable and textured three‐dimensional (3D) models of coastal boulders without physical contact with the object, based on multi‐view image measurement techniques. This method has several advantages over traditional measurements that are inaccurate or alternative solutions using costly techniques such as terrestrial laser scanning. Our methods propose the use of low‐cost equipment (digital cameras) that can be used in various coastal environments to easily acquire numerous images of the object of interest. Initial results can be rapidly assessed in the field for immediate quality control. Resulting 3D models, built from overlapping multi‐view digital photographs, allow the reconstruction of realistic‐looking and textured boulder surfaces. A particular interest in this task is the family of algorithms known as structure from motion (SFM). The work presents analysis of SFM techniques by examining 3D models of boulders observed at a coastal field site on Lu Dao Island in south‐eastern Taiwan. Copyright © 2013 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.