Abstract

In this study, we confirmed the utility of airborne and portable on-ground scanning light detection and ranging (LIDARs) for three-dimensional visualization of an urban park and quantification of biophysical variables of trees in the park. The digital canopy height model (DCHM) and digital terrain model generated from airborne scanning LIDAR data provided precise images of the ground surface and individual tree canopies. The heights of 166 coniferous and broadleaf trees of 11 species in the park were estimated from the DCHM images with slight underestimation (mean error = −0.14 m, RMSE = 0.30 m). Portable on-ground scanning LIDAR provided images of individual trees with detailed features. Tree height and trunk diameter were estimated to be within 0.31 m and 1 cm, respectively, from the on-ground LIDAR images. We combined airborne and on-ground LIDAR images to overcome blind regions and created a complete three-dimensional model of three standing trees. The model allowed not only visual assessment from all viewpoints but also quantitative estimation of canopy volume, trunk volume, and canopy cross-sectional area.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call