Abstract

A three-dimensional (3-D) cellular automaton (CA) model for simulating the dendrite morphology of cast Mg alloys has been developed. In the model a technique based on two sets of mesh is utilized to perform the simulation to reproduce the texture of Mg dendrites. The CA calculation is performed using a set of mesh that is defined by the hexagonal close-packed (HCP) crystal lattice, and other computations are carried out by using a cubic mesh. The two sets of mesh are coupled by using interpolation method. The kinetics of the solid-liquid interface is obtained directly by the difference between local equilibrium composition and local actual composition given by the solute transport equation. The model was used to simulate 3-D columnar growth of sixteen grains and 3-D equiaxed growth of a single dendrite of AZ91D alloy. Permanent mold castings of AZ91D alloy were produced and sampled for optical metallographic examinations, and the simulated results were compared with the metallographic results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call