Abstract

Ground settlement occurs because of the surrounding ground behavior during tunnel excavation. A high chance of its occurrence could cause the collapse of buildings; therefore, the accurate prediction and assessment of ground settlement are necessary when structures are concentrated in urban regions. This study leverages Geographic Information Systems (GIS) and 3D modeling to evaluate the effects of tunnel excavation on the ground settlement and damage of buildings along the Mandeok–Centum underground highway in Busan. It integrates the field topography with building data to simulate and visualize construction-induced interactions. Numerical analysis is used to assess the effects of the terrain elevation, building presence, excavation sequences, and lag distance between the twin tunnels on the settlement. The results indicate that high terrain elevation, dense building layouts, and shorter distances between tunnels increase settlement. Furthermore, this study deduces that bidirectional excavation causes a rapid increase in settlement compared with parallel excavation, which is evident from the variations in the inflection points during the excavation process. Finally, this study estimates the damage to buildings and ground settlements and visualizes risk maps using GIS, emphasizing the practicality of 3D modeling based on GIS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call