Abstract
Abstract An offline 3D chemical transport model (CTM) has been used to study the evolution of the Antarctic ozone hole during the sudden warming event of 2002 and to compare it with similar simulations for 2000. The CTM has a detailed stratospheric chemistry scheme and was forced by ECMWF and Met Office analyses. Both sets of meteorological analyses permit the CTM to produce a good simulation of the evolution of the 2002 vortex and its breakup, based on O3 comparisons with Total Ozone Mapping Spectrometer (TOMS) column data, sonde data, and first results from the Environmental Satellite–Michelson Interferometer for Passive Atmospheric Sounding (ENVISAT–MIPAS) instrument. The ozone chemical loss rates in the polar lower stratosphere in September 2002 were generally less than in 2000, because of the smaller average active chlorine, although around the time of the warming, the largest vortex chemical loss rates were similar to those in 2000 (i.e., −2.6 DU day−1 between 12 and 26 km). However, the disturbed vortex of 2002 caused a somewhat larger influence of polar processing on Southern Hemisphere (SH) midlatitudes in September. Overall, the calculations show that the average SH chemical O3 loss (poleward of 30°S) by September was ∼20 DU less in 2002 compared with 2000. A significant contribution to the much larger observed polar O3 column in September 2002 was due to the enhanced descent at the vortex edge and increased horizontal transport, associated with the distorted vortex.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.