Abstract
A suboptimal midcourse guidance law is obtained for interception of free-fall targets in the three-dimensional (3D) space. Neural networks are used to approximate the optimal feedback strategy suitable for real-time implementation. The fact that the optimal trajectory in the 3D space does not deviate much from a vertical plane justifies the use of the two-dimensional (2D) neural network method previously studied. To regulate the lateral errors in the missile motion produced by the prediction error of the intercept point, the method of feedback linearization is employed. Computer simulations confirm the superiority of the proposed scheme over linear quadratic regulator guidance and proportional navigation guidance as well as its approximating capability of the optimal trajectory in the 3D space.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Aerospace and Electronic Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.