Abstract

Bladder cancer is an increasingly common malignancy, and muscle invasive bladder cancer is associated with particularly high rates of morbidity and mortality. The morphologic and molecular diversity of bladder cancer poses significant challenges in elucidating the invasion mechanisms responsible for disease progression. Furthermore, conventional invasion assays do not provide a physiological context for studying bladder cancer invasion within 3D microenvironments and have limited ability to capture the contribution of cellular phenotypic heterogeneity to disease progression. Here, we describe the development of a 3D microtumor invasion model suitable for the analysis of cellular phenotypic heterogeneity in cell lines and primary tumor cells from bladder cancer patients. This model incorporates a self-assembly approach for recapitulating features of bladder cancer invasion in 3D microenvironments and probing the invasive cell subpopulations. The gene expression profiles of invading microtumors were analyzed by incorporating a gold nanorod-locked nucleic acid biosensor. The incorporation of the single cell biosensor and transient gene knockdown into the system revealed the formation of invasive leader cells with upregulated Delta-like ligand 4 (DLL4) expression as well as the role of NOTCH1-DLL4 signaling in collective bladder cancer invasion. The involvement of DLL4 expressing cells in bladder cancer invasion was also observed in patient samples obtained from transurethral resection. Collectively, our study demonstrates a 3D microtumor invasion model for investigating intracellular heterogeneity of bladder cancer invasion and analyzing patient derived samples toward personalized medicine applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.