Abstract

Ancient Chinese sauce glaze porcelain has recently received growing attention for the discovery of epsilon iron oxide (ε-Fe2O3) crystals in glaze. In this work, we first confirm the presence of ε-Fe2O3 microcrystals, in large quantiteis, in sauce glaze porcelain fired at the Qilizhen kiln in Jiangxi province during the Southern Song dynasty. We then employed focused ion beam scanning electron microscopy (FIB-SEM) to investigate the three-dimensional microstructure of ε-Fe2O3 microcrystals, which revealed three well-separated layers (labeled, respectively, as LY1, LY2, and LY3 from the glaze surface to inside) under the glaze surface. Specifically, LY1 consists of well-defined dendritic fractal structure with high ordered branches at micrometers scale, LY2 has spherical or irregular-shaped particles at nanometers scale, while LY3 consists of dendrites with four, six, or eight primary branches ranging from several nanometers to around 1 μm. Given these findings, we proposed a process for the possible growth of ε-Fe2O3 microcrystals in ancient Chinese sauce glaze.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.