Abstract

The intervertebral disc (IVD) is a complex organ that acts as a flexible coupling between two adjacent vertebral bodies and must therefore accommodate compression, bending, and torsion. It consists of three main components, which are elegantly structured to allow this: the annulus fibrosus (AF), the nucleus pulposus (NP), and the end-plates (EP). Thus far, it has not been possible to examine the microarchitecture of the disc directly in three dimensions in its unaltered state and thus knowledge of the overall architecture of the disc has been inferred from a range of imaging sources, or by using destructive methods. A nondestructive ultrahigh field Magnetic Resonance Imaging (MRI) of 11.7T was used together with image analysis to visualize the ovine IVDs. Three-dimensional image stacks from eight IVDs harvested from sheep, half of which were 4 to 5 years old and the others approximately 2 years old were reconstructed and examined, and their microstructure were imaged. The overall structure of the disc, including the average of 14 AF lamellae (9-28), NP, and EP was then visualized with particular attention given to integrating elements as radial translamellar cross-links, AF-NP transition zone EP-AF integration and EP-NP insertion nodes (ie the connecting junctions between the EP and NP). Moreover, collagen fiber orientation was determined at different depths and locations throughout the annulus. It was found that there was a clearer demarcation in the AF-NP transition zone of the younger discs compared with the older ones. This difference was reflected in the visibility of AF-NP and EP-AF integration. It was also possible to view the fiber architecture of the AF-NP integration in greater depth than was possible previously with histological techniques. These fibers were mainly observed in the younger discs and their length was measured to be of 2.6 ± 0.2mm. The present results provide a substantial advance in visualization of the three-dimensional architecture of an intact IVD and the integration of its components.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.