Abstract

The interaction between an electrically conducting fluid and an external magnetic field in an ideal cylindrical electromagnetic flowmeter is numerically investigated for both laminar and turbulent flows. Induced electric potential in the fluid, and the difference in potential at the measuring electrodes are directly obtained by including MHD effects in the CFD simulations. Fully developed laminar and turbulent flows are simulated. The computed electric potential difference on the electrodes agrees with analytical values for small Hartmann number cases, where the induced Lorentz force is small. Turbulent flow produces a more uniform electric potential distribution in the flow meter cross-section than laminar flow. These integrated MHD/CFD simulations couple the MHD effect with flow dynamics without deriving a weighting function with an assumed velocity profile, which will be necessary for electromagnetic flow meters when the Hartmann number is not small.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.