Abstract

ABSTRACT Artificial metamaterials have attracted widespread attention of research communities due to their anomalous physical properties compared to those of conventional materials. In this study, we designed a three-dimensional (3D) lightweight meta-architecture consisting of 6-connected anti-chiral honeycombs. The mechanical properties (e.g. Young’s modulus, compression strength, and Poisson’s ratio) of the proposed meta-architecture could be programmed by adjusting a series of geometric parameters, as shown through numerical simulations. Moreover, an optically sensitive polymer-based 3D meta-architecture with 6-connected anti-chiral features was constructed by the stereolithography method. Owing to the regulation of the negative Poisson’s ratio, 3D meta-architecture achieved a greater ductility under compression than those of traditional truss structures while retaining a relatively high strength and low density. Compression experiments validated the excellent tunability of the mechanical properties of the proposed 3D 6-connected anti-chiral structure. The results suggest the promising applications of this structure in lightweight aircraft, vibration isolation, and mechanical sensors

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.