Abstract
Titanium dioxide (TiO2) and TiO2-based composite materials have been widely investigated in lithium-ion batteries (LIBs) owing to their small volume change and high safety during the cycling process. However, the low ionic and electrical conductivity of TiO2 nanomaterials leads to poor cycling performances for LIBs. Herein, we successfully synthesized three-dimensional (3D) mesoporous nanocube TiO2/reduced graphene oxide (TiO2/RGO) composites with a simple hydrothermal method without using any surfactants and high-temperature calcination. The as-prepared TiO2/RGO composites are characterized by x-ray diffraction, scanning electron microscopy, electron microscopy, and Brunauer–Emmett–Teller surface area. Benefiting from the RGO conductive substrates and 3D nanotube mesoporous structure, the as-prepared TiO2/RGO composites exhibit high specific capacities of ∼180 mA h g−1 at 1.2 C after 300 cycles as anode materials for lithium-ion batteries (LIBs).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.