Abstract

In this study, three dimensional (3D) polycaprolactone/bio-derived hydroxyapatite (PCL/BHA) composite scaffolds were fabricated by using a melt-deposition system (MDS) for the applications in bone repair. PCL/BHA composites with BHA contents of 0, 10, 20, and 40% were successfully processed into 3D scaffolds by using MDS, while it was failed to fabricate PCL/BHA scaffold with BHA content of 60%. The scaffolds produced were demonstrated to possess the same structures as the predefined with highly uniform and completely interconnected pores. The compressive modulus and strength of the PCL/BHA scaffold increased from 27 to 56 MPa and from 1.9 to 4.5 MPa, respectively, as BHA content increased from 0 to 40%. The wettability of PCL/BHA composite scaffold was also improved with the increase of BHA content. Moreover, the PCL/BHA scaffolds fabricated by MDS showed satisfactory biocompatibility and were capable of being integrated with the surrounding host bone. This study shows the feasibility of fabricating 3D PCL/BHA composite scaffolds with favorable pore structures, mechanical properties, wettability and biocompatibility by using MDS and supports further research of developing novel PCL/BHA composite scaffolds with MDS for the applications in bone repair.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.