Abstract
We present an effective method for the accurate three-dimensional (3D) measurement of small industrial parts under a complicated noisy background, based on stereo vision. To effectively extract the nonlinear features of desired curves of the measured parts in the images, a strategy from coarse to fine extraction is employed, based on a virtual motion control system. By using the multiscale decomposition of gray images and virtual beam chains, the nonlinear features can be accurately extracted. By analyzing the generation of geometric errors, the refined feature points of the desired curves are extracted. Then the 3D structure of the measured parts can be accurately reconstructed and measured with least squares errors. Experimental results show that the presented method can accurately measure industrial parts that are represented by various line segments and curves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.