Abstract
This paper presents a new three-dimensional (3D) volume measurement approach of bubble in gas-liquid two-phase flow. According to the dual perspective imaging principle, bubble feature images can be captured from two different view angles. The least square ellipse fitting algorithm is used to figure out the feature parameters from the captured images. Then the 3D volume of bubble can be quantitatively measured. Compaerd with the traditional volume estimation methods based on single perspective imaging, it can effectively reduce the loss of bubble feature information. In the experiment, the 3D volume reconstruction of bubbles from dual perspective images is conducted, and the variation of bubble volume in the bubble rising process is studied. The results show that the measurement accuracy based on the proposed 3D method is higher than those based on traditional methods. The volume of rising bubble is periodically changed, which indicates that bubble achieves periodic rotation and deformation in the rising process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.