Abstract

A three dimensional (3-D) measurement method with orthogonal composite grating aided by fringe contrast and background calibration is proposed. Due to spectrum overlap, we find that the contrast and background of each deformed phase-shifting fringe demodulated from the captured composite fringe image is changed differently, which violates the principle that the contrast and background between any two deformed fringes must be uniform in the traditional 3-D measurement method with orthogonal composite grating, and therefore results in measurement error. We acquire the phase-shifting sinusoidal fringes from the composite fringe image captured on the reference plane, and the zero- and first-order spectra of the sinusoidal fringes can be obtained by filtering in the spatial frequency domain. Then the ratio contrast and background coefficients between the phase-shifting sinusoidal fringes can be calculated. When an object is measured, the contrast and background of the demodulated deformed fringes can be calibrated by these ratio coefficients. A new 3-D measurement mathematical model is set up to reconstruct the object. Experiments prove the new method can effectively restrain the effect of spectrum overlap, and can improve the measurement accuracy more than 1 time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.