Abstract

Herein, goji berries were pretreated with sodium carbonate (Na2CO3) and then dried via ultrasound-assisted air drying or microwave drying. Water migration and phenolic chemistry of goji berries were studied under drying. A three-dimensional ellipsoid water transport model, accounting for porosity and temperature fluctuations, was established to explore the intricacies of the drying mechanism. Generally, microwave drying promoted interior water transport compared to ultrasound drying. Among all the drying methods, microwave drying at 240 W (MW-240 W) exhibited the highest De (from 7.34 × 10−9 to 9.61 × 10−9 m2/s) and kc (6.78 × 10−4 m/s) values. The goji berries received a considerably high water content gradient between its surface and center within the first 2 s of all the drying treatments. Microwave drying diminished the water content gradient earlier than air drying and ultrasound-assisted air drying treatments. Furthermore, most correlations observed among phenolics, oxidase activity, and cell wall pectin did not align with the established theories, highlighting the highly nonlinear nature of phenolic chemistry during goji berry drying. This study provides a three-dimensional model to study the mass transfer mechanism of goji berries and analyzes the evolution of polyphenols during the drying process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.