Abstract

Context. Magnetic reconnection is believed to be the primary mechanism by which non-potential energy stored in coronal magnetic fields is rapidly released during solar eruptive events. Unfortunately, owing to the small spatial scales on which reconnection is thought to occur, it is not directly observable in the solar corona. However, larger scale processes, such as associated inflow and outflow, and signatures of accelerated particles have been put forward as evidence of reconnection. Aims. Using a combination of observations we explore the origin of a persistent Type I radio source that accompanies a coronal X-shaped structure during its passage across the disk. Of particular interest is the time range around a partial collapse of the structure that is associated with inflow, outflow, and signatures of particle acceleration. Methods. Imaging radio observations from the Nançay Radioheliograph were used to localise the radio source. Solar Dynamics Observatory (SDO) AIA extreme ultraviolet (EUV) observations from the same time period were analysed, looking for evidence of inflows and outflows. Further mpole magnetic reconstructions using SDO HMI observations allowed the magnetic connectivity associated with the radio source to be determined. Results. The Type I radio source was well aligned with a magnetic separator identified in the extrapolations. During the partial collapse, gradual (1 km s−1) and fast (5 km s−1) inflow phases and fast (30 km s−1) and rapid (80–100 km s−1) outflow phases were observed, resulting in an estimated reconnection rate of ∼0.06. The radio source brightening and dimming was found to be co-temporal with increased soft X-ray emission observed in both Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) and Geostationary Operational Environmental Satellite (GOES). Conclusions. We interpret the brightening and dimming of the radio emission as evidence for accelerated electrons in the reconnection region responding to a gradual fall and rapid rise in electric drift velocity, in response to the inflowing and outflowing field lines. These results present a comprehensive example of 3D null-point reconnection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.