Abstract

A three-dimensional (3-D) finite-element (FE) approach was developed and implemented for computation of global magnetic fields in a 14.3 kVA modified Lundell alternator. The essence of the method is the combined use of magnetic vector and scalar potential formulations in 3-D FEs. This approach makes it practical, using state-of-the-art supercomputer resources, to globally analyze magnetic fields and operating performances of rotating machines which have 3-D magnetic flux patterns. The 3-D FE computed fields and machine inductances as well as various machine performance simulations of the 14.3-kVA machine are presented.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call