Abstract

A three-dimensional localization method for tracking sperm whales with as few as one sensor is demonstrated. Based on ray-trace acoustic propagation modeling, the technique exploits multipath arrival information from recorded sperm whale clicks and can account for waveguide propagation physics like interaction with range-dependent bathymetry and ray refraction. It also does not require ray identification (i.e., direct, surface reflected) while utilizing individual ray arrival information, simplifying automation efforts. The algorithm compares the arrival pattern from a sperm whale click to range-, depth-, and azimuth-dependent modeled arrival patterns in order to estimate whale location. With sufficient knowledge of azimuthally dependent bathymetry, a three-dimensional track of whale motion can be obtained using data from a single hydrophone. Tracking is demonstrated using data from acoustic recorders attached to fishing anchor lines off southeast Alaska as part of efforts to study sperm whale depredation of fishing operations. Several tracks of whale activity using real data from one or two hydrophones have been created, and three are provided to demonstrate the method, including one simultaneous visual and acoustic localization of a sperm whale actively clicking while surfaced. The tracks also suggest that whales' foraging is shallower in the presence of a longline haul than without.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.