Abstract

A technique for reconstruction of liquid-gas interfaces based on high-speed stereo-imaging is applied to the liquid-vapor interfaces formed above a heated surface during pool boiling. Template matching is used for determining the correspondence of local features of the liquid-vapor interfaces between the two camera views. A sampling grid is overlaid on the reference image, and windows centered at each sampled pixel are compared with windows centered along the epipolar line in the target image to obtain a correlation signal. The three-dimensional coordinates of each matched pixel are determined via triangulation, which yields the physical world representation of the liquid-vapor interface.Liquid-vapor interface reconstruction is demonstrated during pool boiling for a range of heat fluxes. Textured mushroom-like vapor bubbles that are fed by multiple nucleation sites are formed close to the heated surface. Analysis of the temporal attributes of the interface distinguishes the transition with increasing heat flux from a mode in which vapor is released from the surface as a continuous plume to one dominated by the occurrence of intermittent vapor bursts. A characteristic morphology of the vapor mushroom formed during vapor burst events is identified.This liquid-vapor interface reconstruction technique is a time-resolved, flexible and non-invasive alternative to existing methods for phase-distribution mapping, and can be combined with other optical-based diagnostic tools, such as tomographic particle image velocimetry. Vapor flow morphology characterization during pool boiling at high heat fluxes can be used to inform vapor removal strategies that delay the occurrence of critical heat flux during pool boiling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.