Abstract

The high-precision patterning of metal halide perovskites (MHPs) is of paramount importance for their device application. Here, we demonstrate the femtosecond (fs)-laser-assisted formation of three-dimensional MHP nanocrystal (NC) patterns with strong blue photoluminescence (PL) inside an oxide glass. Our strategy enables the crystallization and erasing of CsPb(Cl/Br)3 NCs inside a glass localized around the laser focal area through a combination of fs laser irradiation and thermal treatment processes. These recoverable patterns exhibit a switchable PL associated with the laser-induced defect and the thermal healing of MHP NCs that are benefits from the soft ionic crystal structure and low formation energy of the MHPs. Due to the high stability offered by the protection of the oxide glass matrix, the laser printing of fine-structured MHP micropatterns can be repeated over multiple cycles with a high robustness compared with their colloidal process counterparts. Our results demonstrate a simple strategy for creating emissive patterns inside a stable and transparent solid matrix that could be promising for applications including information storage, three-dimensional displays, anticounterfeit labels, and information security protection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.