Abstract

AbstractThe waves of liquid film flow play an important role on the process intensification in spinning disk reactors (SDRs). However, the mechanism of wave formation was still unclear. In this work, a three‐dimensional large eddy simulation was developed to investigate the mechanism, as well as the characteristics of waves in the SDR. Agreed with the imaging results, different wave patterns were identified as: smooth film, concentric, and spiral waves in spreading direction; sine‐like and pulse‐like waves in fluctuating direction. The radial and tangential relative movements among the layers of liquid film were found to dominate the formation of different wave patterns. Local average film thickness (havg) and local wave amplitude (Δh) ranged from 0 to 500 μm and 0 to 200 μm, respectively. The waves can improve the turbulent intensity and enlarge the specific surface area, resulting in the intensification of transfer processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call