Abstract

Three-dimensional (3-D) kinematic features of wheelchair propulsion across four selected speeds were investigated based on 10 skilled male wheelchair athletes. Kinematic data were collected through 3-D cinematography with a mirror. The results demonstrated that as the speed increased, the drive phase was performed faster while the range of the push-angle remained constant. More trunk forward lean motion resulted in a large initial contact angle in front of the top dead center of the pushrim. Recovery involved a large range of vertical motion in terms of shoulder abduction and hyperextension in order to increase the distance over which a greater velocity could be developed. To maximize wheelchair racing speed, it was critical to obtain the maximal shoulder and elbow velocities at initial contact of the drive phase and the maximal hand velocity at the end of the recovery phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.