Abstract
AbstractThis paper is a complement to the work of the second author on modular quotient singularities in odd characteristic. Here, we prove that if V is a three-dimensional vector space over a field of characteristic 2 and G < GL(V) is a finite subgroup generated by pseudoreflections and possessing a two-dimensional invariant subspace W such that the restriction of G to W is isomorphic to the group SL2(𝔽2n), then the quotient V/G is non-singular. This, together with earlier known results on modular quotient singularities, implies first that a theorem of Kemper and Malle on irreducible groups generated by pseudoreflections generalizes to reducible groups in dimension three, and, second, that the classification of three-dimensional isolated singularities that are quotients of a vector space by a linear finite group reduces to Vincent's classification of non-modular isolated quotient singularities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.