Abstract

Artificial fractal structures have attracted considerable scientific interest in circulating tumor cells (CTCs) detection and capture, which plays a pivotal role in the diagnosis and prognosis of cancer. Herein, we designed a bionic TiO2 inverse opal photonic crystal (IOPC) structure for highly efficient immunocapture of CTCs by combination of a magnetic Fe3O4@C6@silane nanoparticles with anti-EpCAM (antiepithelial cell adhesion molecule) and microchannel structure. Porous structure and dimension of IOPC TiO2 can be precisely controlled for mimicking cellular components, and anti-EpCAM antibody was further modified on IOPC interface by conjugating with polydopamine (PDA). The improvement of CTCs capture efficiency reaches a surprising factor of 20 for the IOPC interface compared to that on flat glass, suggesting that the IOPCs are responsible for the dramatic enhancement of the capture efficiency of MCF-7 cells. IOPC substrate with pore size of 415 nm leads to the optimal CTCs capture efficiency of 92% with 1 mL/h. Besides the cell affinity, IOPCs also have the advantage of light scattering property which can enhance the excitation and emission light of fluorescence labels, facilitating the real-time monitoring of CTCs capture. The IOPC-based platform demonstrates excellent performance in CTCs capture, which will take an important step toward specific recognition of disease-related rare cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call