Abstract

A three-dimensional inverse analysis is adopted to estimate the unknown conditions on the workpiece surface during a grinding process. The numerical method (linear least-squares error method) requires just one iteration and can solve the inverse problems given only the temperature information at a finite number of locations beneath the working surface within a specified time domain. Results show that the heat source into the grinding zone and the heat transfer coefficient in the cooling region can be obtained by the proposed method even when under the influence of measured errors. Furthermore, it is found that the estimated heat transfer coefficient is more sensitive than the heat source to different measured errors and depths. Analyses of the temperature, heat distribution and heat transfer coefficient of the workpiece will help prevent the occurrence of thermal damage to the workpiece, which are caused by the high temperatures generated during the grinding process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call