Abstract

Under certain conditions, numerous internal surface cracks develop in pressurized thick-walled cylinders, both in the radial and longitudinal directions. For fatigue life assessment of such vessels, the 3-D interaction effects among these cracks on the prevailing stress intensity factors (SIFs) need evaluation. In Part I of this paper, radial crack arrays are considered exclusively. The mode I SIF distribution for a wide range of semi-circular and semi-elliptical cracks are evaluated. The 3-D analysis is performed via the finite element method with the submodeling technique, employing singular elements along the crack front. SIFs are evaluated for arrays of up to n = 180 cracks; for a wide range of crack depth to wall thickness ratios, a/t, from 0.05 to 0.6; and, for various ellipticities of the crack, i.e., the ratio of crack depth to semicrack length, a/c, from 0.2 to 2. Using a least-squares fit, two simple expressions for the most critical (n = 2) SIFs are obtained for sparse and dense crack arrays. The formulas, which are functions of a/t and a/c, are of very good engineering accuracy. The results clearly indicate that the SIFs are considerably affected by the interaction among the cracks in the array as well as the three-dimensionality of the problem. In Part II of this paper, the interaction effects between longitudinal coplanar cracks will be analyzed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.