Abstract
Flow past a spinning circular cylinder placed in a uniform stream is investigated via three-dimensional computations. A stabilized finite element method is utilized to solve the incompressible Navier-Stokes equations in the primitive variables formulation. The Reynolds number based on the cylinder diameter and freestream speed of the flow is 200. The nondimensional rotation rate, α, (ratio of the surface speed and freestream speed) is 5. It is found that although the two-dimensional flow for α=5 is stable, centrifugal instabilities exist along the entire span in a three-dimensional set-up. In addition, a “no-slip” side-wall can result in separation of flow near the cylinder ends. Both these effects lead to a loss in lift and increase in drag. The end conditions and aspect ratio of the cylinder play an important role in the flow past a spinning cylinder. It is shown that the Prandtl’s limit on the maximum lift generated by a spinning cylinder in a uniform flow does not hold.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.