Abstract

We explore the potential of optical computed tomography (optical-CT) and optical emission computed tomography (optical-ECT) in a new area-whole organ imaging. The techniques are implemented on an in-house prototype benchtop system with improved image quality and the capacity to image larger samples (up to 3 cm) than previous systems based on stereo microscopes. Imaging performance tests confirm high geometrical accuracy, accurate relative measurement of linear attenuation coefficients, and the ability to image features at the 50-microm level. Optical labeling of organ microvasculature was achieved using two stains deposited via natural in vivo circulatory processes: a passive absorbing ink-based stain and an active fluorescin FITC-lectin conjugate. The lectin protein binds to the endothelial lining, and FITC fluorescense enables optical-ECT imaging. Three-dimensional (3-D) optical-CT images have been acquired of a normal rat heart and left lung and a mouse right lung showing exquisite detail of the functional vasculature and relative perfusion distribution. Coregistered optical-ECT images were also acquired of the mouse lung and kidney. Histological sections confirmed effective labeling of microvasculature throughout the organs. The advantages of optical-CT and optical-ECT include the potential for a unique combination of high resolution and high contrast and compatibility with a wide variety of optical probes, including gene expression labeling fluorescent reporter proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.