Abstract

A microcomputed tomography (micro-CT) scanner, which generates three-dimensional (3-D) images consisting of up to a billion cubic voxels, each 5-25 micron on a side, and which has isotropic spatial resolution, is described. Its main components are a spectroscopic X-ray source that produces selectable primary emission peaks at approximately 9, 18, or 25 keV and a fluorescing thin crystal plate that is imaged (at selectable magnification) with a lens onto a 2.5 x 2.5-cm, 1,024 x 1,024-pixel, charge-coupled device (CCD) detector array. The specimen is positioned close to the crystal and is rotated in 721 equiangular steps around 360 degrees between each X-ray exposure and its CCD recording. Tomographic reconstruction algorithms, applied to these recorded images, are used to generate 3-D images of the specimen. The system is used to scan isolated, intact, fixed rodent organs (e.g., heart or kidney) with the image contrast of vessel lumens enhanced with contrast medium. 3-D image display and analysis are used to address physiological questions about the internal structure-to-function relationships of the organs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call