Abstract

The conventional treatment for distal radius fractures typically involves immobilization of the injured extremity using a conventional forearm cast. These casts do cause all sorts of discomfort during wear and impose life-style restrictions on the wearer. Personalized 3D printed splints, designed using three-dimensional (3D) imaging systems, might overcome these problems. To obtain a patient specific splint, commercially available 3D camera systems are utilized to capture patient extremities, generating 3D models for splint design. This study investigates the feasibility of utilizing a new camera system (SPENTYS) to capture 3D surface scans of the forearm for the design of 3D printed splints. In a prospective observational cohort study involving 17 healthy participants, we conducted repeated 3D imaging using both the new (SPENTYS) and a reference system (3dMD) to assess intersystem accuracy and repeatability. The intersystem accuracy of the SPENTYS system was determined by comparison of the 3D surface scans with the reference system (3dMD). Comparison of consecutive images acquired per device determined the repeatability. Feasibility was measured with system usability score questionnaires distributed among professionals. The mean absolute difference between the two systems was 0.44 mm (SD:0.25). The mean absolute difference of the repeatability of the reference -and the SPENTYS system was respectively 0.40 mm (SD: 0.30) and 0.53 mm (SD: 0.25). Both repeatability and intersystem differences were within the self-reported 1 mm. The workflow was considered easy and effective, emphasizing the potential of this approach within a workflow to obtain patient specific splint.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call