Abstract

BackgroundThe major hindrance to imaging the intact adult Drosophila is that the dark exoskeleton makes it impossible to image through the cuticle. We have overcome this obstacle and describe a method whereby the internal organs of adult Drosophila can be imaged in 3D by bleaching and clearing the adult and then imaging using a technique called optical projection tomography (OPT). The data is displayed as 2D optical sections and also in 3D to provide detail on the shape and structure of the adult anatomy.MethodologyWe have used OPT to visualize in 2D and 3D the detailed internal anatomy of the intact adult Drosophila. In addition this clearing method used for OPT was tested for imaging with confocal microscopy. Using OPT we have visualized the size and shape of neurodegenerative vacuoles from within the head capsule of flies that suffer from age-related neurodegeneration due to a lack of ADAR mediated RNA-editing. In addition we have visualized tau-lacZ expression in 2D and 3D. This shows that the wholemount adult can be stained without any manipulation and that this stain penetrates well as we have mapped the localization pattern with respect to the internal anatomy.ConclusionWe show for the first time that the intact adult Drosophila can be imaged in 3D using OPT, also we show that this method of clearing is also suitable for confocal microscopy to image the brain from within the intact head. The major advantage of this is that organs can be represented in 3D in their natural surroundings. Furthermore optical sections are generated in each of the three planes and are not prone to the technical limitations that are associated with manual sectioning. OPT can be used to dissect mutant phenotypes and to globally map gene expression in both 2D and 3D.

Highlights

  • Imaging is a vital tool in all areas of Drosophila research; routinely the tissue is dissected and imaged either at low-magnification using the stereomicroscope or at high-magnification using either compound or confocal microscopy

  • The efficient bleaching and clearing of Drosophila makes it an ideal organism to be imaged by optical projection tomography (OPT), and may be of use for other microscopy techniques, and so we show the utility of this procedure for confocal microscopy

  • The wild-type fly-line w1118 was fixed in paraformaldehyde, a fixative known to create autofluorescence, and was found to have sufficient autofluorescence to mark out internal anatomy when excited at 480 nm (Figure 1C and E)

Read more

Summary

Introduction

Imaging is a vital tool in all areas of Drosophila research; routinely the tissue is dissected and imaged either at low-magnification using the stereomicroscope or at high-magnification using either compound or confocal microscopy. One imaging method that can image internal organs without the need for dissection is optical projection tomography (OPT). The major hindrance to imaging the intact adult Drosophila is that the dark exoskeleton makes it impossible to image through the cuticle We have overcome this obstacle and describe a method whereby the internal organs of adult Drosophila can be imaged in 3D by bleaching and clearing the adult and imaging using a technique called optical projection tomography (OPT). We have used OPT to visualize in 2D and 3D the detailed internal anatomy of the intact adult Drosophila. In addition this clearing method used for OPT was tested for imaging with confocal microscopy. OPT can be used to dissect mutant phenotypes and to globally map gene expression in both 2D and 3D

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call