Abstract

The detailed knowledge of the three-dimensional (3D) organization of the nervous tissue provides essential information on its functional elucidation. We used serial block-face scanning electron microscopy with focused ion beam (FIB) milling to reveal 3D morphologies of the mossy fiber rosettes in the mice cerebellum. Three-week-old C57 black mice were perfused with a fixative of 1% paraformaldehyde/1% glutaraldehyde in phosphate buffer; the cerebellum was osmicated and embedded in the Araldite. The block containing granule cell layer was sliced with FIB and observed by field-emission scanning electron microscopy. The contrast of backscattered electron image of the block-face was similar to that of transmission electron microscopy and processed using 3D visualization software for further analysis. The mossy fiber rosettes on each image were segmented and rendered to visualize the 3D model. The complete 3D characters of the mossy fiber rosette could be browsed on the A-Works, in-house software, and some preliminary quantitative data on synapse of the rosette could be extracted from these models. Thanks to the development of two-beam imaging and optimized software, we could get 3D information on cerebellar mossy fiber rosettes with ease and speedily, which would be an additive choice to explore 3D structures of the nervous systems and their networks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.