Abstract
Idiopathic pulmonary fibrosis (IPF) is a severe health problem characterized by progressive fibroblast proliferation and aberrant vascular remodeling. However, the lack of a suitable in vitro model that replicates cell-specific changes in IPF tissue is a crucial issue. Three-dimensional (3D) cell cultures allow the mimicking of cell-specific functions, facilitating development of novel antifibrosis drugs. We have established a layer-by-layer (LbL) cell coating technique that enables the construction of 3D tissue and also vascularized 3D tissue. This study evaluated whether this technique is beneficial for constructing an in vitro IPF-3D model using human lung fibroblasts and microvascular endothelial cells. We fabricated an in vitro IPF-3D model to provide IPF-derived fibroblasts-specific function and aberrant microvascular structure using the LbL cell coating technique. We also found that this in vitro IPF-3D model showed drug responsiveness to two antifibrosis drugs that have recently been approved worldwide. This in vitro IPF-3D model constructed by a LbL cell coating technique would help in the understanding of fibroblast function and the microvascular environment in IPF and could also be used to predict the efficacy of novel antifibrosis drugs. Impact statement We established a novel in vitro model mimicking idiopathic pulmonary fibrosis. Three-dimensional culture was constructed by layer-by-layer cell coating technique. This novel model provides a visualization of fibroblast-specific function. This assay allows for the assessment of pulmonary microvascular environment. Our model may be useful for predicting the efficacy of novel antifibrosis drugs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.