Abstract

A 3D hydrogen-bonded metal-organic framework, [Cu(apc)2]n (TJU-Dan-5, Hapc = 2-aminopyrimidine-5-carboxylic acid), was synthesized via a solvothermal reaction. The activated TJU-Dan-5 with permanent porosity exhibits a moderate uptake of 1.52 wt% of hydrogen gas at 77 K. The appropriate BET surface areas and decoration of the internal polar pore surfaces with groups that form extensive hydrogen bonds offer a more favorable environment for selective C2H6 adsorption, with a predicted selectivity for C2H6/CH4 of around 101 in C2H6/CH4 (5:95, v/v) mixtures at 273 K under 100 kPa. The molecular model calculation demonstrates a C-H···π interaction and a van der Waals host-guest interaction of C2H6 with the pore walls. This work provides a strategy for the construction of 3D hydrogen-bonded MOFs, which may have great potential in the purification of natural gas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call