Abstract

A novel multifunctional Janus magnetic micromotor was designed and constructed by using MIL-100(Fe)@TiO2@Fe3O4 multicore-shells modified with horseradish peroxidase (HRP) as a smart active platform to realize detection and degradation of hydroquinone (HQ). The obtained micromotor showed a unique three-dimensional (3D) hierarchical architecture with highly exposed active sites and could autonomously move at a speed of 140 ± 7.0 μm·s-1 by O2 bubbles generated from the catalytic decomposition of H2O2 fuel. Benefiting from the combination of active self-propulsive motion, high peroxidase-like activity, tuned heterojunctions with matching band structures, and a 3D hierarchical structure, an effective platform involving dynamically sensitive detection and quick removal of HQ from water was established by using the multifunctional HRP-integrated MIL-100(Fe)@TiO2@Fe3O4 Janus micromotor. The proposed multifunctional Janus magnetic micromotor had advantages of simple and feasible fabrication, sensitive detection and effective photo-Fenton degradation of HQ in a wide pH range of 4-7, and magnetic recycling, revealing potential for environmental remediation applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.